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Context

• Increasing our understanding of beam halo:
– Three components:

1. Analytical: fundamental physics, scaling laws
2. Simulation: more realistic, include aspects of diagnostics
3. Experiment: usual challenges and rewards

– All three required as we push ahead. Diagnostic performance 
defines success of the latter and therefore affects our entire 
understanding.

• Diagnostics for different scenarios:
– Purpose built experiments (LANL LEDA, U of Md, etc…)
– Dedicated beam studies with user facilities
– Setup and operation of user facilities
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Challenges

• Halo – inherently challenging – dynamic range issue in both 
simulations and diagnostics

• Challenges to diagnostics developers:
– Typical spec for profile monitors: 5-10% accuracy in measurement 

of RMS beam size. Sometimes achieve better, sometimes 
measurements are not believed even at this level.

– A typical application: match beam envelope to lattice so that 
emittance growth and halo development is minimized. 
Confirmation by measuring beam profile to assure RMS emittance
is maintained… also measure halo.

• Measuring halo evolution
– Ring: implies measurement vs. time, possibly with one station
– Linac/Transport Line: implies measurement vs. distance; many 

stations
– Another challenge: cost.
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Definitions

• Need clear definition of Halo
– Amount of beam beyond certain transverse extent? Deviation from 

Gaussian in tails?
– Could vary depending on application
– Parameterization
– Will drive diagnostic technique

• Need clear definition of requirements
– Usual: absolute accuracy, stability, resolution, dynamic range, …
– Measure relative to peak current density in core? Relative stability 

between measurements, for parametric scan?
– During operation (as opposed to beam physics experiments), What 

is figure of merit for a halo tuning exercise?
– Is on-line, nondestructive measurement required?
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Types of Halo Diagnostics

• What are Halo Diagnostics?
• Pre-workshop discussions suggested an expansive 

definition resulting in 3 types of halo diagnostics:
1. Devices that measure contributors to Halo
2. Devices that directly measure halo and halo evolution
3. Devices that measure the effects of halo development

• All three are represented in this workshop, with a 
concentration on the second
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Types of Halo Diagnostics
Some applications and devices
• Devices to measure contributors to Halo

– Standard wire scanners (mismatch)
– Tune monitors (beam-beam effect)
– Time resolved profile (variation of space charge along length of bunch)
– BPMs to measure beamline optics
– Electron collectors
– Emittance scanners (initial distribution for simulations)

• Direct measurement of halo and halo evolution
– LANL LEDA profile monitors
– SNS wires, scraper, IPM, laser 
– HERA wires
– Diffusion rate measurements after collimation (in SPS, RHIC, etc…)
– JLab end station profile monitor
– SNS Beam in gap (longitudinal halo)

• Effects of halo growth
– Loss monitors
– Thermocouples near ISIS target and planned for SNS
– Background measurements in detectors
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Emittance Measurement

Typically, slit and collector
• Beginning: Input for simulations

to
• End: result after growth

Another type of emittance measurement: 
Scanning pinhole emittance scanner for Heavy ion fusion studies

• Motivation: after beams are merged and neutralized, bulk of beam
must hit fusion target

• Space charge dominated beam “neutralized” by selecting small 
beamlets with pinhole

• Complete 4-D emittance measurement of converging beam
– Correlations are measured
– Very time consuming

Ultimate: 6-D phase phase measurement
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Multi-beam Induction Linac Driver

Multiple Ion 
source 

and 
injector

Multiple-Beam Acceleration Drift compression

Bending Final
focusing

Chamber
transport

Target
Input
6.4MJ
Yield 

350MJ
400m

1.6 MeV
0.87 A/beam
30 µs
112 beams

Typical Driver Parameters:

2.5 GeV Xenon
130 A/beam
200 ns

2 km

2.5 GeV
3.3 kA/beam
8 ns

Enrique Henestroza, PAC03
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Movable Pinhole Measurement of 4-D Phase Space at
Entrance to Drift Tube

Image taken after pinhole sample
has drifted 1 meter

Full 2-D
Pinhole Scan

1cm

BEAM

Enrique Henestroza, PAC03
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Profile measurement techniques (1 of 4)

The early days

– Foil activation
– Photographic film
– Glass plates
– Plastic sheets

• Physical analysis completed offline
• Still of use for calibration
• SNS will analyze activation profile of target

Shafer, Santa Fe Profile monitor workshop
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Profile measurement techniques (2 of 4)

Invasive targets

Traditional:
– Harps/multiwires
– Stepping wires
– Flying wires
– Aperture-collector

Like emittance scanners
More Exotic:
– Liquid wires
– Sodium curtains

Shafer, Santa Fe Profile monitor workshop
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Profile measurement techniques (3 of 4)

Not-so-invasive targets

– Residual gas ionization
Connolly, et. al.

– Gas fluorescence
Requires excited states with fast decay time

– Beam fluorescence
– Laser beam probes

Compton scattering, stripping
– Particle beam probes

i.e. measure deflection of electron beam probe
– Wall currents

i.e. quadrupole moment detection with electrodes

Shafer, Santa Fe Profile monitor workshop
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Profile measurement techniques (4 of 4)

2D Imaging (both invasive and non-invasive)

– Phosphor screens
– Optical transition radiation
– Array detector in beam

Even a CCD has been deployed in beam (short lived)
– IR imaging
– Synchrotron radiation

Shafer, Santa Fe Profile monitor workshop
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Typical 2D imaging devices
Phosphor, OTR, Synch. Light, …

phosphor screen display for the 
RHIC Injection Line: 

Optical profile, BIW02
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2D Imaging devices
Specifications

• Usually not specified to 
measure halo
– Potential is there
– But saturation, dynamic 

range of electronics,…
• Rapid acquisition
• X, Y correlation

3.5%Total
2.0%Statistics
1.4%Calibration
2.0%Resolution
1.0%Optics defects
1.0%Screen defects

Size ToleranceSource of 
Error

Typical tolerance Budget for an imaging 
profile monitor (APS Flag):

Optical profile, BIW02
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Typical Wire Scanner

• SNS carbon wire scanners:
– Spec: 10% accuracy, 5% resolution of RMS beam width
– Direct measurement of secondary emission current
– In Ring: option of detecting particle shower with fast PMT-

based loss monitors
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SNS Carbon wire scanner
Measurement of secondary emission current 

• Raw data shows larger tail than Gaussian profile

Wire scanner vertical profile WS14

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

40 45 50 55 60

Position

Vo
lta

ge

Raw data
Fit

Blokland, data analysis from 02 commissioning at ORNL
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SNS Carbon wire scanner
Measurement of secondary emission current 

Wire scanner vertical profile WS14
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• One minute for full scan (each point averaged over 8 beam pulses) 
• Noise level less than 0.002 Volts compared to 3.5 Volt peak (>10^-3)

Blokland, data analysis from 02 commissioning at ORNL
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Vibrating wire scanner (VBS) 
Problem: wire heating. Solution: wire heating

• Measures effect of wire temperature – other heating mechanisms 
near high current beam?

• Demonstrated in < 1nA/mm beam 1D projected current density
• S/N in this experiment dominated by electromagnetic interference, 

possibly solvable

S.G. Arutunian, et al, Phys. Rev. ST Accel. Beams 6, 042801 (2003)



Shea SNS/ORNL
May 20, 2003

Specification for measuring beam tails

• LHC transverse profile monitor specification:
– detect densities of 10^-3 (for single bunches), to 10^4 (for PS 

batches) of the maximum of the distribution. 
– there is no demand to extend the dynamic range up to the peak 

density of the bunch/beam
– The processes occurring in the tails are not expected to vary 

rapidly and the integration time of the measurement can be made 
long (seconds or minutes)



Shea SNS/ORNL
May 20, 2003

Traditional profile monitors
Improving dynamic range

Current mode Counting mode
Increasing linear 
dynamic range

1 Wire multiple targets
Increasing signal for 
tail measurements

• Analog front ends & digitizers are improving (Integral nonlinearity of data 
acquisition systems better than 10^-5), but counting experiments still have the 
edge

• Remaining issues involve knowledge and control of beam/target interaction 
region
– Systematic effects
– Background in some applications (coincidence techniques can help)
– Stability for lengthy measurements
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LEDA measurements

• Motivation: pure 
study of halo 
evolution

• Data from wire and 
scraper are 
combined into 
composite profile

• Update from 
Gilpatrick

J. H. Kamperschroer, et. al., PAC01
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LEDA measurements
Recent analysis
• For bunched beam, initial 6-D phase space measurement may 

be required as input into simulation
• More from Wangler

Phys. Rev. ST Accel. Beams 5, 124201 (2002) 
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Halo measurements at JLab
• Motivation for measurement: Halo hitting target frame can 

cause event rate comparable to rate from target itself
• Upstream of CEBAF Large Acceptance Spectrometer

• Combined data from 25 micron and 1 mm Fe wires, and 1mm 
thick Fe plate, similar to LEDA data analysis

1mm thick plate 1mm wire 1mm thick plate

Freyberger, PAC03 
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Halo measurements Upstream of CEBAF 
Large Acceptance Spectrometer
• Combined data from 25 micron and 1 mm Fe wires

10^8

Freyberger, PAC03 
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Challenge:
Building trust in profile measurements

• Sparse distribution
– Within one machine: Unlike BPMs, cross-correlation within a 

machine is not typical
– Across various machines: exotic techniques are usually not 

available at multiple machines with similar beam (compare 
w/ button BPMs & switched electrode electronics in light 
sources)

• Steps forward
– Continue dedicated experiments (ref. reports from 

Snowmass 01, ICFA Diagnostics 02)
– Identify commonality in existing devices/applications –

combine data/experience
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In Closing, 
Some General Goals for Workshop

• Fundamental and operational definitions of halo
• Requirements for diagnostics

• Define current state of the art
• Define goals
• Identify promising technologies and techniques
• Identify promising experiments

• Foster continued collaboration in all the above
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